Tuesday, December 12, 2006

Dam

From http://www.m-w.com/cgi-bin/dictionary:
Dam is a barrier preventing the flow of water or of loose solid materials (as soil or snow); especially : a barrier built across a watercourse for impounding water.

http://www.answers.com/dam
Dam


A barrier or structure across a stream, river, or waterway for the purpose of confining and controlling the flow of water. Dams vary in size from small earth embankments for farm use to high, massive concrete structures for water supply, hydropower, irrigation, navigation, recreation, sedimentation control, and flood control. As such, dams are cornerstones in the water resources development of river basins. Dams are now built to serve several purposes and are therefore known as multipurpose. The construction of a large dam requires the relocation of existing highways, railroads, and utilities from the river valley to elevations above the reservoir. The two principal types of dams are embankment and concrete. Appurtenant structures of dams include spillways, outlet works, and control facilities; they may also include structures related to hydropower and other project purposes. See also Electric power generation; Irrigation (agriculture); Water supply engineering.

Dams are built for specific purposes. In ancient times, they were built only for water supply or irrigation. Early in the development of the United States, rivers were a primary means of transportation, and therefore navigation dams with locks were constructed on the major rivers. Dams have become more complex to meet large power demands and other needs of modern countries.

In addition to the standard impounded reservoir and the appurtenant structures of a dam (spillway, outlet works, and control facility), a dam with hydropower requires a powerhouse, penstocks, generators, and switchyard. The inflow of water into the reservoir must be monitored continuously, and the outflow must be controlled to obtain maximum benefits. Under normal operating conditions, the reservoir is controlled by the outlet works, consisting of a large tunnel or conduit at stream level with control gates. Under flood conditions, the reservoir is maintained by both the spillway and outlet works. See also Reservoir.

All the features of a dam are monitored and operated from a control room. The room contains the necessary monitors, controls, computers, emergency equipment, and communications systems to allow project personnel to operate the dam safely under all conditions. Standby generators and backup communications equipment are necessary to operate the gates and other reservoir controls in case of power failure. Weather conditions, inflow, reservoir level, discharge, and downstream river levels are also monitored. In addition, the control room monitors instrumentation located in the dam and appurtenant features that measures their structural behavior and physical condition.

All dams are designed and constructed to meet specific requirements. First, a dam should be built from locally available materials when possible. Second, the dam must remain stable under all conditions, during construction, and ultimately in operation, both at the normal reservoir operating level and under all flood and drought conditions. Third, the dam and foundation must be sufficiently watertight to control seepage and maintain the desired reservoir level. Finally, it must have sufficient spillway and outlet works capacity as well as freeboard to prevent floodwater from overtopping it.

Dams are classified by the type of material from which they are constructed. In early times, the materials were earth, large stones, and timber, but as technology developed, other materials and construction procedures were used. Most modern dams fall into two categories: embankment and concrete. Embankment dams are earth or rock-fill; other gravity dams and arch and buttress dams are concrete. See also Arch; Concrete.

The type of dam for a particular site is selected on the basis of technical and economic data and environmental considerations. In the early stages of design, several sites and types are considered. Drill holes and test pits at each site provide soil and rock samples for testing physical properties. In some cases, field pumping tests are performed to evaluate seepage potential. Preliminary designs and cost estimates are prepared and reviewed by hydrologic, hydraulic, geotechnical, and structural engineers, as well as geologists. Environmental quality of the water, ecological systems, and cultural data are also considered in the site-selection process.
Factors that affect the type are topography, geology, foundation conditions, hydrology, earthquakes, and availability of construction materials. The foundation of the dam should be as sound and free of faults as possible. Narrow valleys with shallow sound rock favor concrete dams. Wide valleys with varying rock depths and conditions favor embankment dams. Earth dams are the most common type. See also Engineering geology; Fault and fault structures.
The designers of a dam must consider the stream flow around or through the damsite during construction. Stream flow records provide the information for use in determining the largest flood to divert during the selected construction period. One common practice for diversion involves constructing the permanent outlet works, which may be a conduit or a tunnel in the abutment, along with portions of the dam adjacent to the abutments, in the first construction period. The stream is diverted into the outlet works by a cofferdam high enough to prevent overtopping during construction. A downstream cofferdam is also required to keep the damsite dry. See also Cofferdam.

Personnel responsible for operation and maintenance of the dam are familiar with the operating instructions and maintenance schedule. A schedule is established for collection and reporting of data for climatic conditions, rainfall, snow cover, stream flows, and water quality of the reservoir, as well as the downstream reaches. All these data are evaluated for use in reservoir regulation. Another schedule is established for the collection of instrumentation data used to determine the structural behavior and physical condition of the dam. These data are evaluated frequently. Routine maintenance and inspection of the dam and appurtenant structures are ongoing processes. The scheduled maintenance is important to preserve the integrity of the mechanical equipment.

The frequency with which instrumentation data are obtained is an extremely important issue and depends on operating conditions. Timely collection and evaluation of data are critical for periods when the loading changes, such as during floods and after earthquakes. Advances in applications of remote sensing to instrumentation have made real-time data collection possible. This is a significant improvement for making dam safety evaluations.
Throughout history there have been instances of dam failure and discharge of stored water, sometimes causing considerable loss of life and great damage to property. Failures have generally involved dams that were designed and constructed to engineering standards acceptable at the time. Most failures have occurred with new dams, within the first five years of operation.

No comments: